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Studies of polarization properties of scattered light from turbid materials such as biological tis-
sues have received considerable recent attention, because of the potential of polarimetric approaches
for tissue imaging, characterization, and diagnosis. Polarization can be used as an effective tool to
discriminate against multiply scattered light (acting as a gating / contrast mechanism) and thus may
facilitate enhancement of contrast and resolution in tissue imaging. Moreover, the intrinsic tissue
polarimetry characteristics contain wealth of morphological and functional information, which can
be exploited for quantitative tissue characterization and assessment. However, in a complex random
medium like tissue, numerous complexities due to multiple scattering and spatially inhomogeneous
birefringence, as well as simultaneous occurrences of several polarization events, present formidable
challenges for biomedical tissue polarimetry. In this chapter, we discuss advances in polarized light
methodologies to overcome some of these challenges, and present illustrative examples of biomedi-
cal applications. Specifically, we review the basic polarimetry formalisms, outline the specific issues
in tissue polarimetry, discuss the Stokes and Mueller experimental systems, and describe forward
modeling of polarized light propagation in tissue. We then focus on inverse analysis for polarimetric
results quantification and applications to quantitative tissue assessment. The other classes of polar-
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ization applications in biomedicine, that of tissue imaging and polarization microscopy, are also
mentioned in passing, with sufficient references to corresponding recent reviews of these topics.
Key words: polarization, multiple scattering, retardance and birefringence, turbid polarimetry,
Monte Carlo simulations, Stokes vector, Mueller matrix, polar decomposition, tissue anisotropy,
biological and medical applications

13.1 Introduction
Polarization of light has not been exploited to its full extend in biomedicine, partly because of

the highly depolarizing nature of most biological tissues. This is unfortunate, because polariza-
tion offers an interesting contrast mechanism for tissue imaging and a rich abundance of important
biophysical information of potential relevance to tissue diagnosis and characterization. Its partial
neglect in biomedicine is slowly being redressed, however, as better experimental techniques of
partial polarization detection and quantification, improved models of polarized light-tissue interac-
tions, and refined interpretation of tissue polarization data, are emerging. As such, several attractive
applications of this improved polarimetric methodology become feasible. In this chapter, we re-
view polarized light fundamentals and mathematical formulations of polarized light propagation in
biological tissues, describe forward and inverse problems in polarimetry of turbid media, discuss
advances in various emerging polarimetric measurement systems, and focus on applications related
to tissue diagnosis and assessment.

13.2 Fundamentals of Polarization
The definitions and properties of polarized light have been discussed at length in literature [1, 2,

3, 4], and so only a brief overview is provided here. In its classical description, polarization is a
consequence of electromagnetic (EM) wave nature of light, in which the transverse oscillations of
the electric and magnetic field vectors (E⃗ and B⃗) trace out stationary curves. If these vectors instead
follow random paths in their temporal evolution, the resulting light is said to be unpolarized. The
shape of the function traced out by the vectors defines the polarization state of the beam in question.

13.2.1 Polarization states

When the electric field vector E⃗ of an EM wave is confined to a plane, the resulting light is said
to be linearly polarized, and when temporal evolution of the E⃗ vector traces out circles normal to
the direction of the wave’s propagation, the resulting beam is called circularly polarized. Linear and
circular polarization are special cases of the more general elliptical polarization, in which E⃗ follows
an ellipse as the wave propagates.

In the quantized description of polarization, each individual photon is polarized, and its associated
state vector corresponds to one of the classical polarized states [5, 6]. When a large number of
photons are considered, their collective behaviour is consistent with the classical limit (the wave
solution to Maxwell’s equations), and in the case when all of the photons in a beam of light exhibit
the same polarization, the light is said to be fully polarized. On the other hand, when there are
photons of different polarizations, but with a distribution favouring one particular state, the light
is called partially polarized. Finally, when the photons are uniformly distributed over all possible
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polarization states the light is said to be unpolarized. A useful quantification of this distribution is
the degree of polarization, which measures of the uniformity, or lack thereof, of photon polarizations
in a beam: the degree of polarization of fully polarized light is 1, and that of unpolarized light is
0. Depending on the magnitude of the relative surplus of a particular polarization state, a partially
polarized beam of light can fall somewhere between these two extremes.

There are two mathematical formalisms commonly used to describe polarization: the Jones cal-
culus [3, 5, 6], a field-based model which assumes coherent addition of the phase and amplitude of
EM waves, and Stokes-Mueller calculus [3, 5, 6, 7, 8, 9], an intensity-based model which instead
utilized incoherent addition of intensities. While theoretically interesting, the Jones formalism is
limited in that it can describe pure polarization states, and it is thus ill suited for applications in
which it is necessary to consider partial polarization. In general, biological tissues tend to be depo-
larizing, and so Jones calculus is rarely used in tissue polarimetry. Fortunately, the Stokes-Mueller
formalism is capable of fully describing polarized light and its interaction with arbitrary materials,
and so it is the mathematical system of choice in biomedical polarimetry.

13.2.2 Stokes-Mueller formalism

In this experimentally oriented formalism, polarization states are described by four measurable
quantities, known as the Stokes parameters (introduced by G. G. Stokes in 1852). The four pa-
rameters, denoted I, Q, U , and V , are defined relative to six different intensity measurements, each
corresponding to the intensity of a beam in question after it has passed through various ideal polar-
izers: IH is the intensity through a horizontal linear polarizer, IV through a vertical linear polarizer,
IP and IM through linear polarizers at 45◦ and 135◦ (or −45◦) respectively, and finally IR and IL
through right and left circular polarizers, respectively. The Stokes parameters are often combined
into a four dimensional vector, called a Stokes vector, in which the parameters can be written as

S =


I
Q
U
V

=


IH + IV
IH − IV
IP − IM
IR − IL

 . (13.1)

Thus, I represents the total intensity of the light, Q and U represent the degree and orientation of
linear polarization, and V represents the degree and direction of circular polarization. Note that I is
given above as a sum of horizontal and vertical polarized intensities, even though a sum of any two
orthogonal polarization states would do; also note that S is not a vector in the classical sense (not a
directional quality), but in the column-matrix sense of the word. The Stokes parameters are related
by

I2 ≥ Q2 +U2 +V 2, (13.2)

where the equality holds in the case of full polarization, and the inequality for partial polarization.
Thus, the degree of polarization is defined as a function of the Stokes parameters by

DOP =

√
Q2 +U2 +V 2

I
, (13.3)

so when a beam is unpolarized (DOP = 0), we have that Q = U = V = 0. Further, the degree of
linear polarization is defined by

DOLP =

√
Q2 +U2

I
, (13.4)

and the degree of circular polarization by

DOCP =
V
I
. (13.5)
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When light described by the Stokes vector Sin interacts with a material, its polarization state is
usually modified, and the resulting light can be described by the Stokes vector Sout . The transfer
function between the input and output states can be written as a linear equation

Sout = MSin, (13.6)

where M is a 4×4 matrix known as a Mueller matrix (named after its inventor Hans Mueller, who
introduced it in the 1940s). Expanding Eq. (13.6) into its components gives

Iout
Qout
Uout
Vout

=


M1,1 M1,2 M1,3 M1,4
M2,1 M2,2 M2,3 M2,4
M3,1 M3,2 M3,3 M3,4
M4,1 M4,2 M4,3 M4,4




Iin
Qin
Uin
Vin

 . (13.7)

The effects of a material on polarized light are completely described by its corresponding Mueller
matrix [3, 6, 9], and so the matrix’s 16 elements (15 if the change in absolute intensity is excluded)
serve as the sample’s ‘polarization fingerprint’, from which it is possible to infer information about
its physical nature.

It is important to note that not every real 4× 4 matrix is a physically realizable Mueller matrix.
The fundamental requirement for these matrices is that they map to a physically significant Stokes
vector (i.e., one satisfying Eq. (13.2)) for every possible incident polarization state [8, 9].

While both the Jones and the Stokes-Mueller formalisms describe polarization change using ma-
trix/vector equations, the later provides a framework with which depolarizing materials (e.g., biolog-
ical samples) can be described. So while the 2×2 transfer matrices of Jones calculus can potentially
be useful theoretical tool, their practical applications have been limited to describing specular re-
flections, clear media, and thin films where depolarization is not an issue. Mueller matrices, on the
other hand, not only provide a complete description of a much wider range of physical materials, but
their elements are associated with various intensities (rather than amplitudes), and so they can be
experimentally determined with relative ease using intensity-measuring conventional (square-law
detector) instruments, such as polarimeters, spectrometers and radiometers. Thus, for the purposes
of this chapter, we will employ the Stokes-Mueller formalism exclusively for describing biomedical
polarimetry.

13.2.3 Fundamental polarimetric characteristics

There are three principle characteristics of interest that a Mueller matrix can encode: depolariza-
tion, diattenuation and retardance, all of which will be examined in further detail.

13.2.3.1 Depolarization

If the degree of polarization of a beam incident on a sample is equal to m (where m is between 0
and 1), and the light resulting from the interaction has a degree of polarization n, where m > n, then
the sample is said to be depolarizing. For the incident beam

m =

√
Q2

in +U2
in +V 2

in

I
, (13.8)

and so in the case that the intensity is unchanged, the degree of polarization of the resulting light
can be written as

n =

√
Q2

out +U2
out +V 2

out

I
=

√
(aQin)

2 +(bUin)
2 +(cQin)

2

I
, (13.9)
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where |a| , |b| , |c| ≤ 1. This relation can be cast in matrix form (like that of Eq. (13.6)) by taking
the Mueller matrix of the sample to be [8, 10]

M∆ =


1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

 |a| , |b| , |c| ≤ 1 (13.10)

Thus, 1−|a| and 1−|b| are the linear depolarization factors (for horizontal/vertical and ±45◦ re-
spectively), and 1− |c| is the circular depolarization factor. The net depolarization, denoted ∆, is
usually defined as

∆ = 1− |a|+ |b|+ |c|
3

= 1− |Tr (M∆)−1|
3

, (13.11)

so ∆ remains between 0 and 1.
Note that this depolarization factor of the medium is not the same as the various Stokes degrees of

polarization in Eqs. (13.3)–(13.5). The later quantify the amount of polarization of the light beam,
whereas the former describes the tendency of a material to depolarize light, in a manner that is
somewhat independent of the polarization state of the incident light. In general, the two quantities
can be approximately related as DOPlight ∼ 1−∆medium, although this relation only holds as an
equality in special cases. In biomedical polarimetry, the dominant processes causing depolarization
are multiple scattering and spatially heterogeneous arrangements of uniaxially birefringent domains.
A material with a large value of ∆ is significantly depolarizing, and so in general, the degree of
polarization of light after interaction with such a medium will tend to be low.

13.2.3.2 Diattenuation

The following two polarization effects, namely diattenuation and retardance, are both the result
of differences in the refractive indices for different polarization states, and are often described in
terms of ordinary and extraordinary axis and indices. Differences in the real parts of said indices
result in linear and circular birefringence (retardance), whereas differences in the imaginary parts
can cause linear and circular dichroism (which manifests itself as diattenuation). Diattenuation is
analogous to dichroism, which is the differential absorption of two orthogonal polarization states
(linear or circular); however, diattenuation is more general, since the differential attenuation need
not be caused by absorption, but rather, it can be the result of various other effects (e.g, scattering).

The diattenuation (d) of an optical element is a measure of the differential attenuation of orthogo-
nal polarization states, for both linear and circular polarization. Thus, linear diattenuation is defined
as the differential attenuation of two orthogonal linear polarization states (e.g., ±45◦), and circular
diattenuation is defined as the differential attenuation of right and left circular polarization states.
The Mueller matrix of an ideal diattenuator can be defined using three parameters: q and r, the
intensity transmittance (or reflectance) of the two incident orthogonal polarization states in question
(be they linear or circular), and θ , the angle (with respect to the horizontal) at which the principle
axis is oriented. For a linear diattenuation, the Mueller matrix is defined as [8, 10]


q+ r (q− r)cos(2θ) (q− r)sin(2θ) 0

(q− r)cos(2θ) (q+ r)cos2 (2θ)+2
√

qrsin2 (2θ) (q+ r−2
√

qrsin(2θ) cos(2θ) 0
(q− r)sin(2θ) (q+ r−2

√
qrsin(2θ) cos(2θ) (q+ r)cos2 (2θ)+2

√
qrsin2 (2θ) 0

0 0 0 2
√

qr

 .
(13.12)

In the circular case, the dependence on θ disappears due to rotational symmetry, and so the general
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Mueller matrix for a circular diattenuator is [8, 10]

MD =


q+ r 0 0 q− r

0 2
√

qr 0 0
0 0

√
qr 0

q− r 0 0 q+ r

 . (13.13)

A common example of a diattenuator is an ideal polarizer, which can transform an unpolarized
incident beam to fully polarized light (d = 1 in this case), albeit often with a significant decrease in
the intensity I.

13.2.3.3 Retardance (birefringence)

Retardance, closely related to birefringence, is the property in which a material introduces a phase
shift between two orthogonal polarization states when it interacts with incident light. Mathemati-
cally, the two are related simply via δ = k L∆n, where δ is the retardance, k is the wave vector of the
light, L is the pathlength in the medium, and ∆n is the difference in the real parts of the refractive
index known as birefringence. Linear retardance (or linear birefringence), denoted δ , takes place
between linear polarization components separated by a geometric angle of 90◦ (e.g., horizontal
and vertical linear polarization components). Note that linear birefringence (retardance) is a vector
quantity, possessing both a magnitude and a direction (orientation). The general Mueller matrix of
a pure linear retarder with retardance δ and a fast axis oriented at an angle θ is [8, 10]

1 0 0 0
0 cos2 (2θ)+ sin2 (2θ)cos(δ ) sin(2θ) cos(2θ) [1− cos(δ ) ] −sin(2θ) sin(δ )
0 sin(2θ) cos(2θ) [1− cos(δ ) ] sin2 (2θ)+ cos2 (2θ)cos(δ ) cos(2θ) sin(δ )
0 sin(2θ) sin(δ ) −cos(2θ) sin(δ ) cos(δ )

 (13.14)

Circular retardance (optical rotation), denoted ψ , arises from phase differences between right cir-
cularly polarized (RCP) and left circularly polarized (LCP) states. The Mueller matrix of a circular
retarder with an optical rotation of ψ is [8, 10]

1 0 0 0
0 cos(2ψ) −sin(2ψ) 0
0 sin(2ψ) cos(2ψ) 0
0 0 0 1

 (13.15)

13.3 Experimental Polarimetry
There are two principle applications in biomedical polarimetry research: tissue imaging and tissue

characterization. Both of these require highly accurate measurements of the polarization retaining
signals, as biological tissues tend to be strongly depolarizing due to multiple scattering and/or bire-
fringence domains of varying magnitude and orientation, thus creating a large depolarized source of
noise which can inhibit the detection of the weak remaining information-carrying polarization sig-
nal. Thus, many traditional polarimetry systems (e.g., crossed linear polarizers used in microscopy
for examining thin fixed ex-vivo tissue slices) are poorly suited for these applications.

Polarimetric approaches offer an additional contrast mechanism that confers two main advantages
over intensity-only polarization-insensitive methods: they allow for some discrimination against
multiply scattered light, which can enable higher resolution imaging of tissues and their underlying
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structures [11], and they provide a method for non-invasive and quantitative tissue diagnosis, since
the polarimetric characteristics of tissues can encode a large amount of biochemical, morphological,
and functional information [12, 13, 14]. A variety of experimental tools for exploiting these advan-
tages have been developed, which are capable of performing reliable measurements of polarimetric
tissue data, despite the aforementioned technical and biophysical challenges. Such instruments can
be used to measure the Stokes vector of a beam upon interacting with the sample in question, and/or
the Mueller matrix of the sample itself.

13.3.1 Stokes polarimeters

As discussed in Section 13.2.2, the Stokes parameters corresponding to a beam of light can be
determined by performing six intensity measurements through linear and circular polarizers (IH , IV ,
IP, IM , IR, IL) [9]. By exploiting the property that IH + IV = IP+ IM = IL+ IR, it is possible to deter-
mine the Stokes parameters of a beam with only four measurements, using a linear polarizer, with
transmission axis aligned at +45◦ above the horizontal axis, followed by a quarter wave plate, with
its fast axis oriented horizontally. Combined, these two elements form a circular polarizer. Three
sets of intensity measurements (denoted Icir(α), where α is the angle of the combined polarizer’s
fast axis above the horizontal) are performed by varying the angle (α) of the circular polarizer with
respect to the horizontal axis. The first three measurements are at α = 0◦, 45◦, and 90◦, and the final
measurement, denoted Ilin(α) is performed by turning the combined polarizer around and setting α
to 0◦. The Stokes parameters can be inferred from these intensity measurements by

I
Q
U
V

=


Icir(0◦)+ Icir(90◦)

I −2Icir(45◦)
Icir(0◦)− Icir(90◦)
−I +2Ilin(0◦)

 . (13.16)

This measurement scheme, first proposed by Collett [15], has been used to measure the Stokes pa-
rameters of transmitted (or backscattered) light from tissue and tissue-like turbid media [16, 17, 18,
19, 20]. However, in order to accurately quantify tissue polarimetric characteristics, it is generally
desirable to use a more sensitive detection method.

One method that shows promise in performing measurements with in the challenging biomedical
environment is the use of polarization modulation with synchronous detection. Various sensitive
detection schemes are possible with this approach; some perform polarization modulation on the
beam that is incident on the sample, whereas others modulate the sample-emerging light by placing
the polarization modulator between the sample and the detector. The resulting periodic signal can
be synchronously monitored with a phase-sensitive (lock-in amplifier based) detection method, and
then analyzed to extract the polarization properties of the beam (Stokes polarimetry) or of the sample
(Mueller polarimetry) that are linked to the physical quantities of interest.

A schematic diagram of one particular polarimeter employing polarization modulation and syn-
chronous lock-in amplification is shown in Fig. 13.1.1 [21]. The system is seeded with unpolarized
light from the laser, which then passes through a mechanical chopper operating at a low frequency
fc (typically in the tens-hundreds of Hz range, exact value unimportant). The chopper is used in
conjunction with lock-in detection to accurately establish the overall signal intensity (I), while elim-
inating the contributions of the output or background fluctuations and any dark current. The input
optics, comprised of a linear polarizer (P1) and an orientation-adjustable quarter wave plate (QWP1)
enable the generation of any input polarization state (with DOP = 1). Following the light-tissue in-
teractions, the beam enters the detection optics, which consist of a removable quarter wave plate
(QWP2), with its fast axis oriented at −45◦, followed by a photoelastic modulator (PEM), a linearly
birefringent resonant device operating in the kilohertz range (e.g. fp ∼ 50 kHz), whose fast axis
is horizontal (0◦) and whose retardation (δPEM) is modulated sinusoidally according to the function
δPEM (t) = δosin(ωt), where ω = 2π fp and δo is the PEM’s user-specific amplitude of maximum
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Figure 13.1: A polarimeter employing polarization modulation and synchronous detection to
measure Stokes parameters. C1 is a mechanical chopper, P1 and P2 are linear polarizers, QWP1
and QWP2 are removable quarter wave plates, L1 and L2 are lenses, PEM is a photoelastic modula-
tor, and APD a photodetector. The chopper and the PEM modulate the signal with frequencies fc
and fp respectively. The detection optics can be rotated by an angle γ around the sample (Adopted
from [13]).

retardation. When measuring the Stokes parameters Q and U , the fast axis of QWP2 is oriented at
−45◦, and when measuring V , said retarder is removed altogether. The PEM is followed by a linear
polarizer (referred to as an analyzer) oriented at 45◦, which converts the polarization modulation
from the PEM into intensity modulation suitable for photodetection. The resulting light is collected
using a pair of lenses, and focused onto a photodetector (e.g., an avalanche photodiode), the sig-
nal from which is sent to a lock-in amplifier. In order to extract the Stokes parameters from the
alternating photocurrent, the reference input of the lock-in amplifier is toggled between the chopper
frequency ( fc) and the PEM modulation frequency ( fp) and its harmonics.

In this experimental arrangement, the Stokes vector of the beam entering the detector, denoted
S f =

[
I f Q f U f Vf

]T , can be related to that of the sample-emerging light, denoted S=
[

I Q U V
]T ,

by multiplying the vector representing the input state by the Mueller matrices of the optical elements
[21]. When the QWP2 is in place, the relation is

I f
Q f
U f
Vf

=
1
2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0




1 0 0 0
0 1 0 0
0 0 cos(δ ) sin(δ )
0 0 −sin(δ ) cos(δ )




1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0




I
Q
U
V

 , (13.17)

and when QWP2 is removed it is
I f r
Q f r
U f r
Vf r

=
1
2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0




1 0 0 0
0 1 0 0
0 0 cos(δ ) sin(δ )
0 0 −sin(δ ) cos(δ )




I
Q
U
V

 . (13.18)
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Thus, the intensity measured by the photodetector is

I f =
I
2
[1−qsinδPEM +ucosδPEM], (13.19)

with QWP2 in place, and

I f r =
I
2
[1− vsinδPEM +ucosδPEM], (13.20)

when it is removed. Here q, u, and v are the normalized polarization parameters, defined as q =Q/I,
u = U/I, and v = V/I. These parameters can be recovered from I f and I f r by expressing Eqs.
(13.19) and (13.20) as Fourier series whose coefficients are given by Bessel functions (this follows
since a periodic function whose argument is itself periodic is represented as a series of harmonics
with Bessel coefficients [22]). By setting the peak modulation retardance to δo = 2.405 radians
(corresponding to the first root of the zeroth-order Bessel function), the normalized polarization
parameters can be expressed as functions of the synchronously-detected signals at the chopper fre-
quency Vfc , as well as the first and second harmonics of the photoelastic modulation frequency,
VfPEM and V2 fPEM respectively. When the detection wave plate is in place, we have [21]

q =
VfPEM

Vfc
√

2 J1(δo)
, (13.21)

u =
V2 f PEM

Vfc
√

2 J2(δo)
, (13.22)

and with QWP2 removed:

v =
VfPEM

Vfc
√

2 J1(δo)
. (13.23)

Thus, the synchronous lock-in detected signals recovered at the first and second harmonics of the
polarization modulation frequency, along with that at the chopper frequency, can be used to deter-
mine the Stokes parameters of a beam with high SNR for any given state of polarization [21].

While this single PEM scheme is faster and more accurate than sequential DC measurements,
it does not allow one to measure all four Stokes parameters simultaneously, as the measurement
of circular polarization requires the manual addition of a wave plate in the beam path, making it
difficult to automate measurements, and rendering the method inaccurate for time-varying Stokes
vectors. Fortunately, the system described above has been generalized to include a second photoe-
lastic modulator (placed directly after the first), which allows for the quasi-simultaneous automated
measurement of the complete Stokes vectors with a high SNR [23]. The second PEM removes the
need for a quarter wave plate, as the bi-periodic intensity oscillations produced by the dual PEMs
along with the linear polarizer contain sufficient information to fully describe the polarization state
of the beam in question. Such a system has proven to be useful as it allows for rapid and flexible
measurement of Stokes vectors, which is useful in itself, and/or can be processed further to enable
Mueller polarimetry.

13.3.2 Mueller Polarimeters

While knowing the Stokes vector of a beam after it has interacted with a sample can be very
informative, this information is dependent on sample properties and on the input light beam (as
evident from Eq. (13.6)). Thus, it is often desirable to determine the sample’s Mueller matrix
itself, which provides a comprehensive description of its polarimetric properties independent of
incident light polarization (its true polarization transfer function). Devices capable of performing
such measurements, known as Mueller matrix polarimeters, have successfully used both DC (using
sequential static measurements) and AC polarization modulation techniques.
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The central difference between Stokes and Mueller experimental polarimetry is that the later
requires knowledge of the polarimetric state of a beam both before and after its interaction with
the sample. In general, it is necessary to know at least 16 independent polarization parameters for
both the input and the output states [1, 3, 8]. That is, if one knows the Stokes vectors of at least
four (suitably selected) input beams before they interact with the sample and then after they do so,
then it is possible to determine the transfer function (the Mueller matrix) of the material in question.
In general, if Si

in is the Stokes vector corresponding to the i-th input beam and Si
out is that of the

corresponding output state, then the two vectors can be related as

Si
out = MSi

in (13.24)

If the input and output vectors are known for n beams (i.e., 1 ≤ i ≤ n), then each input/output pair
can be related using Eq. (13.24). The resulting n linear equations can be combined in matrix form
as [

S1
out · · · Sn

out
]
=
[

MS1
in · · · MSn

in

]
=M

[
S1

in · · · Sn
in
]
, (13.25)

and so the sample Mueller matrix is given by

M =
[

S1
out · · · Sn

out
] [

S1
in · · · Sn

in
]−1

, (13.26)

provided
[

S1
in · · · Sn

in
]

is invertible (so n must equal 4). In practice, the invertability of a matrix is
not binary (i.e., either invertible or not), but rather presents a continuum in which some matrices
are more invertible than others. Given the imperfect nature of experimental measurements, a matrix
ill-suited for inversion (known as poorly-conditioned) will tend to amplify Stokes measurement
errors into the determined Mueller matrix, whereas a well-conditioned matrix will minimize their
impact. Several authors have addressed the issue of robust Mueller polarimetry based on optimum
selection of input Stokes states [24, 25, 26]; some results from a recent study by Layden et al.
[27] are summarized here. In Mueller polarimetry, a globally well-conditioned matrix

[
S1

in · · · Sn
in
]

is one whose Stokes vectors (columns) are evenly distributed over the Poincaré sphere [28]. It is
possible, and sometimes advantageous, to generalize Eq. (13.26) to the case of n ≥ 4 by replacing
the traditional inverse with the Moore-Penrose pseudoinverse defined as

A+ = AT (AAT )
−1
, (13.27)

where A+ is said to be the pseudoinverse of the matrix A. In order to quantify the robustness of a
Mueller matrix determined from a given set of input Stokes vectors (and their corresponding output
vectors), one can perturb the elements in Eq. (13.26) by incorporating measurement errors. Thus,
each Stokes vector Si becomes Si+δSi, where δSi represents the measurement error associated with
the given polarization state. Naturally, the measurement errors in these vectors propagate into the
inferred Mueller matrix, which takes the form

M+δM =
[

S1
out +δS1

out · · · Sn
out +δSn

out
] [

S1
in +δS1

in · · · Sn
in +δSn

in
]+

, (13.28)

where δM is the 4×4 matrix representing the deviation from the sample’s true transfer function. To
maximize the robustness of such a polarimeter, the root mean square of the error δM can be mini-
mized by choosing input Stokes vectors which form the vertices of Platonic solids on the Poincaré
sphere [27].

The polarization modulation experimental setups described in Section 13.3.1 can be used to mea-
sure the Mueller matrix of a sample by first selecting at least 4 different polarization state generator
configurations and measuring their resulting Stokes vectors, and then by sequentially shining those
same beams onto a sample, and measuring the corresponding Stokes vectors of the resulting light.
This approach has been used in complex tissue-like turbid media and in actual tissues [29, 30] and
some of the representative results are presented in Section 13.6. Different Mueller polarimeters
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employing photoelastic modulators have been explored, some of which modulate not only the light
emerging from the sample, but also the original beam, before it is incident on the material of in-
terest. Thus, by putting the sample between two or more PEMs, it can be possible to monitor the
various modulation frequencies (and their harmonics) to directly recover the elements of the sample
Mueller matrix, while bypassing Stokes vector measurements altogether.

Another type of modulation-based Mueller polarimeter involves the use of dual rotating retarders.
In this approach, which has been widely used in tissue polarimetry [31, 32, 33], the polarization of
the sample-incident light is modulated by passing a beam through a fixed linear polarizer, followed
a wave plate (with retardation δ1) rotating at an angular velocity of ω1. This beam is then incident
on the sample, and the resulting light is directed through the analyzing optics, which consist of an-
other rotating wave plate (with retardation δ2, rotating at angular velocity ω2) and a linear polarizer,
which is held fixed. The rotation of the two wave plates results in a periodic variation in the mea-
sured intensity, which can be analyzed by multiplying the Mueller matrices corresponding to the
elements in the optical path (i.e., the polarizers, wave plates, and the sample). In the most common
configurations, the axes of the polarizers are set parallel, the wave plates are both chosen to have a
quarter wave retardance (δ1 = δ2 =

π
2 ) and their angular velocities are set at a 5:1 ratio (5ω1 = ω2)

[31, 33]. It has been shown that this ratio of angular velocities allows for the recovery of all sixteen
Mueller matrix elements from the amplitudes and phases of the twelve frequencies in the intensity
signal. In order to compute these elements, the detected signal is Fourier analyzed, and the elements
of the Mueller matrix can be inferred from the resulting coefficients. A more generalized version
of this measurement scheme could use arbitrary values of retardation and polarizer orientations,
as well as a different ratio of angular velocities, in order to determine prioritized Mueller matrix
elements with greater precision and/or higher SNR [31, 33].

Another noteworthy polarimetric measurement scheme that employs polarization modulation is
the snapshot Mueller matrix polarimeter [34]. This measurement method encodes polarimetric in-
formation in different wavelengths of a beam, allowing for highly sensitive and instantaneous mea-
surement of all sixteen Mueller matrix elements simultaneously. To do so, a broadband spectrum
source is used in conjunction with two birefringent retarders and a linear polarizer to produce the
incident beam, and the light emerging from the sample is analyzed using a similar combination of
birefringent retarders and a linear polarizer. The thickness of the retarders on either side of the
sample are optimized to recover and analyze sufficiently many polarization states, and the resulting
spectral signals (over a narrow range of ∆λ ∼ 10nm), which are recorded using a spectrometer, are
Fourier analyzed to produce all sixteen Mueller matrix elements.

While modulation based Mueller polarimeters show great promise in point measurements, they
usually involve synchronous detection, which can make them poorly suited for imaging larger ar-
eas. Instead, such measurements are usually performed with DC-based polarimeters, by sequen-
tially measuring the intensities with at least sixteen different configurations of source polarizers and
detection analyzers [35]. Unfortunately, such an approach results in fairly low sensitivity measure-
ments, and alternative methods have been investigated. One such method involves liquid crystal
variable retarders, which enables the measurement of Mueller matrices with higher sensitivity and
precision [36, 37, 38]. Such a polarimeter is comprised of a polarization state generator (PSG) unit,
a polarization state analyzer (PSA) unit and an imaging camera, for spatially resolved signal detec-
tion. The PSG, which polarizes the light incident on the sample, is composed of a linear polarizer
(P1) and two liquid crystal variable retarders (LC1 and LC2), with adjustable retardances of δ1 and
δ2 respectively, whose birefringent axes are aligned at angles θ1 and θ2 with the axis of the polarizer
[37]. A schematic of such a measurement scheme is shown in Fig. 13.2.

One widely used configuration involves setting θ1 = 45◦ and θ2 = 0◦, in which case the Stokes
vector, Sin, of the light incident on the sample can be expressed as a simple function of the retar-
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Figure 13.2: A liquid crystal variable retarder polarimeter, where P1 and P2 are linear polariz-
ers, and LC1–LC4 are liquid crystal variable retarders. Together, P1, LC1 (having retardance of δ1
and orientation angle θ1), and LC2 (having retardance of δ2 and orientation angle θ2) comprise the
polarization state generator (PSG). Likewise, LC3 (having retardance of δ2 and orientation angle
θ2), LC4 (having retardance of δ1 and orientation angle θ1), and P2 collectively form the polar-
ization state analyzer (PSA). While the above schematic depicts transmission measurements, other
detection geometries are possible using this measurement scheme.

dances [38]

Sin =


1 0 0 0
0 1 0 0
0 0 cos δ2 sin δ2
0 0 −sin δ2 cos δ2




1 0 0 0
0 cos δ1 0 −sin δ1
0 0 1 0
0 sin δ1 0 cos δ1




1
1
0
0

=


1

cos δ1
sin δ1 sinδ2
sin δ1 cosδ2

 (13.29)

It is apparent from Eq. (13.29) that any possible polarization state on the Poincaré sphere can be
generated with the proper choice of δ1 and δ2. The system’s PSA consists of a similar arrange-
ment of liquid crystal variable retarders (LC3 and LC4) and a linear polarizer, but positioned in the
reverse order with respect to the incoming light. It is followed by a detector, which, for imaging
applications, is a CCD camera.

The PSG unit can be used to produce four unique Stokes vectors, which can be grouped into a
4× 4 generator matrix W, where the i-th column of W corresponds to the i-th polarization state.
Similarly, after sample interactions, the PSA results can be described by a 4×4 analyzer matrix A.
The Stokes vectors of the light to be analyzed are projected onto four basis states, given by the rows
of A. The sixteen intensity measurements required for the construction of a full Mueller matrix are
grouped into the measurement matrix Mi, which can be related to PSA/PSG matrices W and A, as
well as the sample Mueller matrix M by [8, 39]

Mi = A M W. (13.30)

The sample Mueller matrix can be represented as a 16 element column vector Mvec, which can be
related to the corresponding 16×1 intensity measurement vector Mvec

i as

Mvec
i =QMvec, (13.31)

where Q is the 16×16 matrix given by the Kronecker product of A with the transpose of W:

Q = A⊗WT (13.32)

Once the exact forms of the system A and W matrices are known, all the sixteen elements of the
sample Mueller matrix (Mvec, written in column vector form) can be determined from the sixteen
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measurements (Mvec
i ). The 4 × 4 sample Mueller matrix is obtained by rearranging the elements of

Mvec. One important advantage of this approach is that, it allows for calibration and determination
of the exact forms of the system PSG and PSA matrices [37]. This can be accomplished by the
so-called “eigenvalue calibration method”, wherein the exact forms of the system PSG (W) and
PSA (A) matrices are determined from measurements on calibrating samples having known forms
of Mueller matrices (e.g., a set of quarter wave plates and polarizers) [36, 37, 39]. As is apparent,
several specific measurement schemes are possible under this general approach, depending on the
selected values of δ1 and δ2, as well as θ1 and θ2. Several such configurations have therefore been
examined, and some authors have determined the values of the system parameters (elements of A
and W matrices), which optimize the polarimeter and minimize the noise in the resulting Mueller
matrix, resulting in more accurate tissue measurements [36].

Recently, a modulation-based polarimetric imaging scheme employing stroboscopic illumination
has been explored for large surface area measurements [40]. In this novel approach, the sample is
illuminated by a laser, whose pulses are precisely controlled by a programmable pulse generator.
The temporal reference is triggered by the controller of a photoelastic modulator (PEM) operating
at 50 kHz, and the resulting synchronization facilitates “freezing” the intensity variation of the
modulated signal at desirable temporal phases. The intensity is measured (with a CCD camera)
at four specific temporal phases, which are made affectively static via stroboscopic illumination,
and the resulting data is used to infer two-dimensional images of ellipsometric parameters [40, 41].
While this approach may hold promise, it has not yet been employed for complete (sixteen element)
Mueller matrix imaging.

13.4 Forward Modeling of Polarization Transfer in Complex Random
Media

Accurate modeling of interaction of polarized light with tissue micro-structures and its propa-
gation through turbid tissue is extremely useful for the applications of polarized light methods for
tissue imaging, characterization and diagnosis. The insight gained from such forward models helps
in designing and optimizing experiments, and analyzing/interpreting measured data, for specific
applications.

A rigorous, electromagnetic theory based approach for analyzing light propagation in tissue will
need to identify and incorporate the spatio-temporal distribution of complex tissue dielectric struc-
tures (different cells and subcellular structures, connective stromal tissues / extra-cellular matrix,
blood and lymphatic networks, interstitial fluids, etc.) and their absorption and scattering proper-
ties. Clearly this is a formidable task. Due to the ensuing complexity, heuristic approaches with
different levels of approximations have been developed to model light transport in tissues. Radia-
tive transport theory and its simplified variant, the diffusion equation, are often used to model light
propagation in tissue [42, 43, 44]. However, both of these are intensity based (scalar) techniques,
and typically neglect the vector nature of light (polarization). Some attempts have been made to
use the vector radiative transfer equation (VRTE) in this framework to incorporate polarization in-
formation by describing transport of the Stokes vectors of light (photon packets) through a random
medium [42, 44]. However, solving the VRTE in real systems is rather complex, and the solutions
are often too slow and insufficiently flexible to handle the necessary boundary conditions for ar-
bitrary geometries and arbitrary optical properties as desirable in case of tissue [42]. Alternative
analytical approaches based on photon diffusion formalisms, random walk models, and maximum
entropy principles have been explored for modeling polarized light transport in random medium
such as tissues [42, 45, 46, 47, 48]. In these analytical/heuristic approaches, tissue is typically



472 Advanced Biophotonics: Tissue Optical Sectioning

modeled as a turbid medium having bulk-average scattering and absorption properties, where prop-
agation leads to depolarization as a result of strong multiple scattering events (birefringence effects
are often ignored). These approaches have derived simplified analytical relationships between var-
ious quantities of practical interests such as the degree of polarization (either linear or circular) of
forward-scattered or back-scattered light from a turbid medium, average path lengths, the optical
transport parameters of the medium, and so forth [45, 47, 48]. The main aim of these approximate
analytical approaches has been to understanding the overall depolarization trends, its dependence
on the scattering properties of the media, and on the incident state of polarization, and to design /
optimize general polarization schemes to discriminate against multiply scattered photons for tissue
imaging in ‘simple’ geometries. These approaches, while useful, are approximate by their very na-
ture and typically neglect other simultaneously occurring complex tissue polarimetry events (such as
linear birefringence, optical activity etc.). The applications of these models have thus been restricted
to the ‘tissue imaging’ domain (employing polarization gating methods and various other co/cross
polarization detection schemes). Interested readers are referred to references [42, 45, 46, 47, 48, 49]
for the details of these models.

A more encompassing, accurate method is clearly needed for polarimetry applications involving
quantitative assessment of tissue composition and micro-architecture. This can be accomplished by
the polarization-sensitive Monte Carlo (PSMC) techniques. Monte Carlo (MC) technique is a gen-
eral and robust approach for modeling light transport in random medium [43, 50], with its advantage
of applicability to arbitrary geometries and arbitrary optical properties. In this statistical approach
to radiative transfer, the multiple scattering trajectories of individual photons are determined using
random numbers to predict the probability of each scattering event. It is also assumed that scatter-
ing events occur independently and exhibit no coherence effects. The superposition of many photon
paths approaches the actual photon distribution in time and space. The initial Monte Carlo biopho-
tonic models were developed for intensity calculations only and neglected polarization information
[50], which has recently been incorporated in a number of implementations by keeping track of
the Stokes vectors of propagating photon packets [49, 51, 52, 53, 54, 55]. A typical flow chart for
PSMC model is shown in Fig. 13.3. Briefly in this model, position, propagation direction, and po-
larization of each photon are initialized and modified as the photon propagates through the medium.
The photon’s polarization, with respect to a set of arbitrary orthonormal axes defining its reference
frame, is represented as a Stokes vector S and polarization effects are applied using medium Mueller
matrices M [12]. The photon propagates in the sample between scattering events a distance sampled
from the probability distribution exp(−µtd), where the extinction coefficient µt is the sum of the
absorption µa and scattering µs coefficients and d is the distance traveled by the photon between
scattering events [49, 50]. Upon encountering a scattering event, a scattering plane and angle are
statistically sampled based on the polarization state of the photon and the Mueller matrix of the scat-
terer. The photon’s reference frame is first expressed in the scattering plane and then transformed
to the laboratory (experimentally observable) frame through multiplication of appropriate rotation
matrices (reference frame manipulation) and by the Mueller matrix corresponding to the scattering
event. Usually, the scattering Mueller matrix M is computed using Mie theory [4], which assumes
the scattering medium to be comprised of discrete spherical scatterers. In principle, incorporation
of scattering Mueller matrices for other non-spherical scatterers or the scattering matrices for other
continuously fluctuating medium is also possible [49, 51]. Nevertheless, the evolution of polariza-
tion state of each photon packet is tracked (via the Stokes vectors) following successive scattering
events. The absorption effects are incorporated after successive scattering events by reducing the
photon weight by a factor W = µa

µa+µs
, as conventionally done in intensity-based MC models also

[43, 50]. Upon encountering an interface (either an internal one, representing tissue layers of differ-
ent optical properties, or an external one, representing external boundary), the probability of either
reflection or transmission is calculated using Fresnel coefficients. Assuming no interference effects,
the final Stokes vectors for light exiting the sample in a particular direction are computed as the sum
of all the appropriate sub-populations of photons. The sample Mueller matrix can then be calculated
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Figure 13.3: A flowchart representing the polarization-sensitive Monte Carlo model. (Adopted
from [12].)

by sequentially changing the input polarization, recording the corresponding output Stokes vectors
for each respective input states, and performing algebraic manipulations as described previously
[52].

While the effects of scattering on the polarization evolution after successive scattering events can
be modeled by the scattering Mueller matrix M, the effects of other medium polarimetry effects
such as linear birefringence and optical activity can also be incorporated by including their corre-
sponding Mueller matrices. However, this is not an obvious modeling step. Specifically, problems
arise in modeling simultaneous polarization events in the presence of multiple scattering. Ma-
trix multiplication of the Mueller matrices for individual polarization effects is not commutative
(MA MB ̸= MBMA), thus, different orders in which these effects are applied will have different ef-
fects on the output polarization. Yet in biological tissue, effects such as optical activity due to chiral
molecules (e.g., glucose and proteins) and linear birefringence due to anisotropic tissue structures
(e.g., collagen, elastin, and muscle fibers), must be incorporated into the model in the presence of
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scattering. This problem is tackled through the use of so-called N-matrix formalism, which com-
bines the effects into a single matrix describing them simultaneously [1, 56]. In this formalism, the
matrix of the sample is represented as an exponential function of a sum of matrices (N-matrices),
where each matrix in the sum corresponds to a single optical polarization effect [52, 56]. The is-
sue of ordering is thus taken care, as matrix addition is always commutative. The N-matrices are
the differential matrices representing the optical effect over an infinitely small optical pathlength,
wherein several polarization effects can be written in a single matrix form. Conventionally, these N-
matrices are 2×2 Jones matrices applicable to non-depolarizing media. For example, the N-matrix
representing combined linear birefringence and optical activity is written as [1, 56]

NOA+LB =
1
2

[
ig0 χ
−χ −ig0

]
(13.33)

Here, g0 = 2π
λ ∆n is the phase retardation per unit distance and χ is the optical rotation per unit

distance. From this N-matrix, the parent non-differential M matrix is derived for the combined
effect [52, 56]. The resulting Jones M-matrix is then converted to a Mueller matrix. Note that such
a conversion from Jones to Mueller matrix is possible only for non-depolarizing matrices. This is
indeed applicable to the PSMC model, since these matrices are incorporated between the scattering
events, where no depolarization takes place. The resulting Mueller matrices for combined effects
are thus applied to the photons as they propagate between scattering events. This approach enabled
the combination of any number of simultaneously occurring polarizing effects. Finally, as shown in
Fig. 13.3, the scattering histories of a large number of photon packets (typically 107–109 photons
are required to generate statistically acceptable results) are tracked as they propagate through the
medium and are summed to yield the macroscopic parameters of practical interest (Stokes vectors,
Mueller matrices, pathlength distributions, polarization statistics from different scattering histories,
etc.).

In the simulation, circular and linear birefringence (these are the two most tissue polarimetry
effects in addition to depolarization) are modeled through the optical activity χ in degrees per cen-
timeter, and through the anisotropy in refractive indices (∆n), respectively [52]. Here, ∆n=(ne−no)
is the difference in refractive index along the extraordinary axis (ne) and the ordinary axis (no). For
simplicity, it is generally assumed that the direction of the extraordinary axis and the value for ∆n is
constant throughout the scattering medium. (although recent research efforts are exploring the ef-
fects of multiple uniaxial domains of varying magnitude and orientation of birefringence). In each
simulation, ne and no are taken as input parameters and a specific direction of the extraordinary
axis is chosen. As photons propagate between scattering events, the difference in refractive indices
seen by the photons depends on the propagation direction with respect to the extraordinary axis.
The effect is usually modeled using standard formulae describing the angular variation of refractive
index in uni-axial medium [49, 52]. Similar to conventional MC model, the scattering and absorp-
tion properties are modeled using the optical transport parameters, scattering coefficient (µs) and
absorption coefficient (µa).

The validity of the above PSMC model has been tested on experimental tissue simulating phan-
toms exhibiting simultaneous scattering and polarization properties, which are known and user-
controlled a priori [12, 13, 29, 52]. These solid optical phantoms were developed using polyacry-
lamide as a base medium, with sucrose-induced optical activity, polystyrene microspheres-induced
scattering and mechanical stretching to cause linear birefringence [52]. These phantom systems
mimic the complexity of biological tissues, in that it exhibits simultaneous effects of linear bire-
fringence, optical activity and depolarization due to multiple scattering. The experimental results of
Mueller matrix measurements from these tissue phantoms and corresponding MC simulation results
of analogous turbid media are presented and discussed subsequently.
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13.5 Interpretation and Decomposition of Mueller Matrices
Polarimetric quantities, such as depolarization, optical activity, and linear birefringence can po-

tentially serve as valuable metrics in biomedical applications. For example, changes in tissue me-
chanical anisotropy (resulting from disease progression or treatment response) can be probed with
birefringence measurements [12, 57], and blood sugar levels can potentially be determined by mea-
suring the optical rotation induced by the chiral glucose molecules [13, 14]. Despite the wealth of
important properties which can be determined via tissue polarimetry, numerous complexities inhibit
their straightforward extraction and interpretation.

Multiple scattering, a common phenomenon in biomedical polarimetry, not only causes extensive
depolarization, but alters the state of the remaining polarized signal in a complex manner, for ex-
ample, by scattering-induced diattenuation and by scattering-induced changes in the orientation of
the polarization vector [21, 58]. Not only are polarimetric quantities difficult to measure reliably,
but their co-occurrence in biomedical samples greatly complicates their unique interpretation. This
problem manifests itself most clearly in trying to interpret the Mueller matrices of such samples:
while the materials’ transfer functions may qualitatively resemble those of one (or many) of the
fundamental characteristics discussed in Section 13.2.3, their measured Mueller matrices generally
look nothing like that of the idealized versions. Instead, they contain a convolved mix of otherwise
individually recognizable properties, with much ‘inter-element cross talk’ obscuring potentially in-
teresting polarization biometrics and hindering their interpretation. Thus, methods accounting for
multiple scattering-induced effects, and capable of decoupling the individual contributions of si-
multaneously occurring basic polarimetric characteristics are required.

13.5.1 Decomposition into basic polarimetric components

Previous attempts at tissue polarimetry analysis have mostly utilized semi-empirical approaches
by selectively measuring particular Stokes vectors or Mueller matrix elements of interest, based on
the purported polarimetric signatures associated with various tissue anatomical or compositional
characteristics [59]. However, recent studies have employed more general models to extract, quan-
tify and interpret intrinsic tissue polarimetry characteristics by decomposing their measured Mueller
matrices into more easily interpretable “basis” matrices [29, 30].

One particularly noteworthy method of Mueller matrix decomposition is known as the product,
or Lu-Chipman, decomposition, after its inventors, who first demonstrated its validity in optically
clear media [10]. This method consists of representing a sample Mueller matrix M as a product of
three basis matrices

M = M∆MRMD, (13.34)

where the depolarizer matrix M∆ encodes the depolarizing effects of the medium, the retarder matrix
MR describes its linear birefringence and optical activity, and the diattenuator matrix MD accounts
for the effects of linear and circular diattenuation.

The diattenuation matrix MD is defined as

MD=

[
1 d⃗T

d⃗ mD

]
, (13.35)

where mD is the 3×3 matrix usually expressed as

mD=
√

1−d2 I+
(

1−
√

1−d2
)

d̂d̂T (13.36)
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Here I is the 3×3 identity matrix, and d⃗ is the diattenuation vector defined as

d⃗ =
1

m1,1

[
m1,2 m1,3 m1,4

]T
, (13.37)

where d̂ is its corresponding unit vector, determined by dividing the diattenuation vector by its
magnitude d, given by

d =
1

m1,1

√
m2

1,2 +m2
1,3 +m2

1,4 (13.38)

(The scalar mi j is the element of the sample Mueller matrix in the i-th row and the j-th column.)
The elements m1,2 and m1,3 represent the linear diattenuation for horizontal/vertical and ±45◦ linear
polarization respectively, and m1,4 represents the circular diattenuation.

The product of the two remaining matrices in the decomposition can be expressed by right-
multiplying the sample Mueller matrix by the inverse of MD, which motivates the following defini-
tion:

M′ = M∆MR = MM−1
D . (13.39)

The matrices M∆, MR and M′ take the following form:

M∆ =

[
1 0⃗T

P∆ m∆

]
; MR =

[
1 0⃗T

0⃗ mR

]
; and M′ =

[
1 0⃗T

P∆ m′

]
, (13.40)

where P∆ = P⃗−md⃗
1−d2 , and the polarizance vector P⃗ is given by

P⃗ =
1

m1,1

[
m2,1 m3,1 m4,1

]T (13.41)

The blocks in Eq. (13.40) are naturally related as m′ = m∆mR. The matrix m∆ can be formed
using the eigenvalues of m′m′T [10]; then, M∆ can be constructed and used to extract the net
depolarization coefficient ∆, another potentially useful biometric, using Eq. (13.11).

The remaining matrix MR, which encodes the retardance, can be computed from Eq. (13.39),
and the scalar value of the total retardance R (representing the combined effect of linear and circular
birefringence) is calculated as

R = arccos
(

Tr(MR)

2
−1
)

(13.42)

The matrix MR can be further analyzed to extract the corresponding linear retardance δ , as well
as the optical rotation ψ , by separating it into the standard Mueller matrices corresponding to said
parameters (Eqs. (13.14) and (13.15)). The values of these numbers can then be expressed directly
in terms of the elements of MR as [29]

δ = arccos(
√
(mR2,2 +mR3,3)

2 +(mR3,2 −mR2,3)
2 −1) (13.43)

and

ψ = arctan
(

mR3,2 −mR2,3

mR2,2 +mR3,3

)
. (13.44)

In summary, the above decomposition (Eqs. (13.34)–(13.44)) operates on a sample Mueller matrix,
and extracts several medium-specific polarimetry metrics of promising biomedical value, namely
diattenuation (d), linear, circular and total depolarization (∆), linear retardance and its orientation
(δ and θ ), and optical rotation (ψ).

Due to the non-commutative nature of matrix multiplication (i.e., AB ̸= BA in general), the
order of the basis matrices in Eq. (13.34) is only one of six possible (distinct) permutations. The
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arrangements are classified into two families: those where the diattenuator matrix is placed before
the depolarizer (this includes Eq. (13.34)), and those where it is placed after [60]. The two groups
are shown below:

∆D Family =

M∆MRMD
M∆MDMR
MRM∆MD

D∆ Family =

MDMRM∆
MRMDM∆
MDM∆MR

(13.45)

It has been shown that of the six possible multiplicative orders, the Lu-Chipman decomposition and
its reversal (MDMRM∆), known as the reverse decomposition, always produce physically realizable
Mueller matrices [60]. The other four decompositions can be obtained from the aforementioned two
by employing similarity transformations. It has been found that in tissue polarimetry (in the absence
of large d-values), the Lu-Chipman and reverse decompositions yield the correct description of
the medium in question, based on the metrics presented above. The only differences between the
forward and reverse orders were occasional sign changes in the derived values, indicating that both
approaches extract the magnitudes of the polarization metrics in a self-consistent manner.

In an effort to eliminate any remaining ambiguity associated with the multiplicative order of the
basis matrices, a more general kind of decomposition, known as the symmetric decomposition, has
been developed, which factors an arbitrary depolarizing Mueller matrix into 5 matrices: a diagonal
depolarizer M∆ multiplied to either side by an equivalent optical sequence containing diattenuators
and retarders [61]. This decomposition can be expressed as

M = MD2MR2M∆MT
R1MD1 (13.46)

As is apparent from the six different decompositions given in Eq. (13.45), the ambiguity in the de-
rived polarization parameter mainly arises depending upon whether the diattenuator matrix is placed
before or after the depolarizer. The symmetric decomposition helps in interpretation and analysis
of any experimental Mueller matrix in that it does not impose any restriction on the preferred se-
quential occurrence of the diattenuation effect. Thus, it allows for extraction of the constituent
polarization parameters of any complex system with less ambiguity. However, it should be men-
tioned, this approach also does not really address the issue of simultaneously occurring polarization
effects, which is typically encountered in tissue. In order to address this issue, a more general kind
of decomposition based on differential matrix formalism of the Mueller calculus, has recently been
developed [62]. This formalism was originally proposed by Azzam for non-depolarizing optical
media [63]; it has been extended and generalized to incorporate depolarization effects [62]. Within
the differential matrix formalism, all elementary polarization and depolarization properties of the
medium are contained in a single differential matrix representing them simultaneously. Thus, this
approach is expected to be more suitable for Mueller matrix polarimetry analysis of tissues, exhibit-
ing simultaneous polarization effects. An interested reader is referred to the literature [62, 63] for
the details of the differential Mueller matrix formalism.

There exists another type of product decomposition, known as the Cloude decomposition, which
expresses an arbitrary depolarizing Mueller matrix M as a sum of a non-depolarizing Mueller matrix
Mn∆(which can be further decomposed using the above-mentioned process) and an ideal polarizer
M∆ [64]. While theoretically interesting and practically attractive (matrix addition is commutative,
so there is no order ambiguity as in product-based decompositions), Cloude decomposition has not
been used in tissue polarimetry.

The decompositions presented here hold great promise for their ability to extract useful biological
metrics from the Mueller matrices of complex samples, but they require comprehensive validation;
more specifically, the effects of various decomposition processes, permutations of basis matrices,
the detection geometry and the propagation path of multiply scattered photons on the extracted
metrics must be thoroughly examined, and above all, the derived parameters must be shown to
accurately represent the true polarimetric properties of the medium in question. Several studies have
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Figure 13.4: The Mueller matrices (a) experimentally recorded in the forward (transmission) de-
tection geometry from birefringent (extension = 4 mm, corresponding to a value of linear retardance
δ = 1.345 rad for a clear phantom), chiral concentration of sucrose = 1 M, χ = 1.96 degree cm−1

turbid (µs = 30 cm−1, g = 0.95) phantom of thickness of 1 cm; (b) generated through the PSMC
model, using the same controlled input scattering and polarization parameters (linear birefringence
∆n = 1.36×10−5, corresponding to δ = 1.345 rad, χ = 1.96 degree cm−1, µs = 30 cm−1, g = 0.95)
as that of the experimental phantom. The excellent agreement between the experimental and the
simulated Mueller matrices emphasizes the capability of the PSMC model in simulating complex
tissue polarimetry effects, including simultaneous optical activity and birefringence in the presence
of multiple scattering. The results of the decomposition of the experimental Mueller matrix are
presented in Table 13.1.

begun investigating these issues [12, 29, 65] and some of the results are presented in the following
section.

13.5.2 Experimental verification of decomposition

Figure 13.4 provides an example of the Lu-Chipman decomposition applied to the experimen-
tally derived Mueller matrix of a control sample, composed of a solid polyacrylamide, and exhibited
simultaneous depolarization, linear birefringence and optical activity. Its Mueller matrix was mea-
sured using forward detection geometry. While the sample’s measured matrix has a rather complex
form, with all sixteen elements being non-zero, the resulting basis matrices exhibit simpler features;
notably, a high level of symmetry and many zero off-diagonal elements. The scalar parameters
(∆, d, δ , and ψ) derived from this decomposition are presented in Table 13.1, showing excellent
agreement with the controlled inputs.

The values for parameters δ and ψ determined from the decomposition of Mueller matrices cor-
responding both to non-scattering (no-microspheres) and turbid (µs = 30 cm−1, g = 0.95) optically
active (χ = 1.96 ◦cm−1) phantoms with increasing birefringence (sample extension of 0–4 mm,
δ = 0–1.34 rad), are displayed in Fig. 13.5 [29]. The values are in close agreement with the con-
trolled experimental inputs (ψ ≈ 1.96◦ and δ = 1.34 rad at 4 mm of extension), for both clear and
scattering samples. This result suggests that the depolarizing effects of multiple scattering have
been properly isolated and accounted for in the decomposition.

Figure 13.6 shows the derived linear retardance (δ ) and optical rotation (ψ) for Monte Carlo
generated Mueller matrices, using chiral molecule concentration as the independent variable [30].
As in the experimental case, the values are in excellent agreement with the input parameters (δ =
1.4 rad and χ = 1.96◦ cm−1 at 1 M sucrose) for both non-scattering and turbid media, showing self-
consistency in inverse decomposition analysis and successful decoupling. The small increases in
optical rotation observed in turbid media (in both the experimental phantoms or the corresponding
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TABLE 13.1: The upper panel shows the experimentally determined Mueller matrix,
and its decomposition into three basis matrices. The lower panel presents the polarization
parameters extracted from these matrices in the second column, and the corresponding
expected values in the third. The input control values for linear retardance δ and optical
rotation ψ were obtained from measurement on a clear (µs = 0 cm−1) phantom having the
same extension (4 mm) and similar concentration of sucrose (1 M) as that of the turbid
phantom, and corrected for the increased pathlength due to multiple scattering (determined
from Monte Carlo modeling). The expected value for the net depolarization coefficient ∆
was determined from the Monte Carlo simulation of the experiment. (Adopted from
reference [29]).

Parameters Derived parameters(from M∆, MR, MD) Expected value
d 0.032 0
δ 1.384 rad 1.345 rad
ψ 2.04◦ 2.07◦
∆ 0.21 0.19

Monte Carlo simulated scattering media) likely arise from the increased optical pathlength caused
by multiple scattering, thus resulting in accumulations of ψ values [29].

The illustrative results discussed above are based on Mueller matrices recorded in the forward
detection geometry, but the extension of this approach to backward detection geometry (which is
well-suited for in-situ measurements) is warranted, and has also been validated [65]. While the
later geometry is important for conceptual and practical reasons, it offers additional technical hur-
dles; notably, the polarization parameters associated with the intrinsic polarimetric properties of the
sample in question can be difficult to infer since they are more strongly coupled with scattering-
induced effects. At detection positions sufficiently close to the exact backscattering direction, the
contribution of the backscattered (singly or weakly scattered) photons can cause large apparent
scattering-induced diattenuation and linear retardance effects, even from isotropic (∆n = 0) scatter-
ing samples. This additional contribution masks the intrinsic polarimetric parameters of interest and
hinders their accurate determination. However, it has been shown that as one moves away from the
exact backscattering geometry, the magnitude of scattering-induced diattenuation and retardance
gradually diminish and eventually become weak (magnitudes d ≤ 0.05, δ ≤ 0.1) for detection posi-
tions located at distances larger than a transport length away from the point of illumination (r > ltr,
where ltr = 1/µs(1−g) is the transport scaling length). Thus one possible method to accurately
measure polarization parameters from a turbid medium using backward detection geometry is to
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Figure 13.5: Linear retardance δ and optical rotation ψ derived from the decomposition of ex-
perimentally determined Mueller matrices of solid chiral (χ = 1.96◦ cm−1, corresponding to 1 M
concentration of sucrose) phantoms with varying degrees of strain-induced birefringence (extension
of 0–4 mm, δ = 0–1.345 radian). Results are shown from both clear (µs = 0 cm−1) and turbid
(µs = 30 cm−1, g = 0.95) phantoms, and the values for the decomposition-derived depolarization
coefficient ∆ are also noted. The measurements were performed in the forward detection geometry
(γ = 0◦) through a 1 cm×1 cm ×4 cm phantom. The symbols correspond to experimental data and
the lines serve to guide the eye. (Adapted from references [12, 30].)

perform measurements at a distance larger than a transport length away from the point of illumina-
tion [65].

Ongoing examination of Mueller matrix decomposition for tissue-like complex turbid media
(whose constituents properties are controlled and known a priori), with both experimental and
Monte Carlo-simulated matrices, have shown that in turbid media with weak diattenuation (mag-
nitude d ≤ 0.1), the decomposition-inferred parameters are essentially independent of the multi-
plicative order of the basis matrices, and that they accurately reflect the known sample properties.
This is an important result, as it suggests that the measurement and decomposition techniques dis-
cussed above may be directly applicable to tissues, in which biological molecules (such as nucleic
acids, amino acids and proteins) exhibit weak dichroism or diattenuation, which would otherwise
be masked by more pronounced polarimetric effects.

By extrapolating the results from Section 13.5.1, one might suspect that the parameters derived
from actual tissue should be independent of multiplication order in the decomposition. This con-
jecture is verified in Table 13.2, which provides an example of a decomposition analysis performed
on the Mueller matrix recorded from dermal tissue of an athymic nude mouse [66]. The basis ma-
trices corresponding to Lu-Chipman and reverse decompositions are shown in this table, as well as
the corresponding values of the extracted polarization parameters. (The other four permutations in
Eq. (13.45) were ruled out in light of physical or mathematical considerations [60, 67].) The sim-
ilarity between the elements of the basis matrices corresponding to both decompositions suggests
that the polarimetric interactions of photons passing through tissue occur simultaneously, rather
than in a preferred sequence, as expected. Most importantly, the excellent agreement between the
parameters extracted from two decompositions and their true values underscores the validity of the
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Figure 13.6: The values of δ and ψ extracted from the decomposition of Monte Carlo-generated
Mueller matrices from birefringent media (linear birefringence ∆n = 1.36×10−5, corresponding to
δ = 1.345 rad for a path length of 1 cm, the axis of linear birefringence was kept along the vertical
direction, orientation angle = 90◦) with varying levels of chirality (χ = 0, 0.196, 0.392, 1.96, and
3.92◦ cm−1, corresponding to concentration of sucrose of 0, 0.1, 0.2, 1, and 2 M, respectively).
Results are presented for both clear (µs = 0 cm−1) and turbid (µs = 30 cm−1, g = 0.95) media.
The symbols represent data points and the lines serve to guide the eye. (Adapted from references
[12, 30].)

decomposition formalism and its self-consistency with respect to the ambiguity of ordering.
Decoupling and quantification of the individual intrinsic tissue polarimetry characteristics is thus

enabled by the polar decomposition analysis, despite their simultaneous occurrence, even in the
presence of the numerous complexities due to multiple scattering. The ability to isolate individual
polarization properties provides a potentially valuable non-invasive tool for biological tissue exam-
inations. The following section examines the ongoing and prospective biomedical applications of
the intrinsic tissue polarimetry characteristics.

13.6 Biomedical Applications of Polarimetric Measurements
A widely-pursued application of polarized light methods is for tissue imaging, which we only

mention in passing (with sufficient citations to refer an interested reader). These imaging ap-
proaches encompass polarization-gating and various parallel/cross linear polarization arrangements
for enhancing skin examinations in dermatology and tumour margins imaging, specifically intra-
operatively / following surgical resections. An interested reader is referred to a recent review on
polarized light imaging of biological tissues by Jacques [68]. Another imaging-related biomedical
application of polarimetry is its use in microscopy, especially nonlinear microscopy. Again, the
reader is referred to an excellent and comprehensive review of recent developments in this excit-
ing field [69]. Outside the tissue imaging domain, quantitative assessment of tissue composition
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TABLE 13.2: The upper panel shows an experimentally determined Mueller matrix measured
from dermal tissue of an athymic nude mouse, and its decomposition into three basis matrices. The
original matrix was measured in vivo from a dorsal skinfold window chamber mouse model, using
a high sensitivity turbid-polarimetry system. The basis matrices in the uppermost decomposition
were obtained using the order M = M∆MRMD, whereas those in the lower set correspond to the
order M = MDMRM∆. The lower panel shows the derived polarimetric parameters corresponding
to each decomposition. Note that this is the first demonstration of Mueller matrix decomposition in
live tissues [66].

Parameters Derived parameters using
the order M∆MRMD

Derived parameters using
the order MDMRM∆

d 0.079 0.051
δ 1.06 rad 1.058 rad
ψ 0.51◦ 0.50◦
∆ 0.58 0.59

and micro-architecture are two particularly attractive and promising applications of polarized light
methods in medicine, and these tissue characterization approaches will be reviewed below.

13.6.1 Quantitative glucose sensing with Stokes/Mueller polarimetry

Glucose is an optically active (chiral) molecule, and its structural asymmetry imposes a unique
‘fingerprint‘ on polarized light that interacts with it. For example, the plane of polarization of lin-
early polarized light is rotated upon passage through a glucose solution, by an amount proportional
to the light interaction length, its concentration, and its wavelength-dependent rotatory power (a
known quantity). As such, the glucose concentration in clear media can be easily determined by
polarimetric measurements of optical rotation (this is routinely done, for example in biochemical
laboratories and in the food industry [1, 70]). Can a similar polarized light approach be used in
biomedicine, for example to noninvasively determine blood glucose levels in diabetic patients? If
yes, this would represent a tremendous advance, as noninvasive glucose sensing remains arguably
one of the most pressing unsolved problem in clinical medicine. Numerous approaches have been,
and are being actively explored to address this difficult challenge [14].

Unfortunately, the polarimetric approach for biomedical glucometry is also fraught with difficul-
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Figure 13.7: Logarithmic plot of experimentally determined optical rotation as a function of
glucose concentration in scattering media (1.4 µm diameter polystyrene microspheres in water,
µs ∼ 28 cm−1) down to physiological glucose levels. Measurements were performed using for-
ward detection geometry (γ = 0◦) through 1 cm of turbid media in a quartz cuvette. (Adopted from
[13, 71].)

ties. Unlike its ‘easy’ transparent media counterpart, light propagating in tissue does not have a
unique interaction length which is needed to convert measured optical rotation to glucose concen-
tration; other dominant and complex tissue effects such as multiple scattering and inhomogeneous
birefringence depolarize the light and alter its polarization properties (including causing chirality-
unrelated apparent rotation of its linear polarized fraction), the glucose chirality effects are rather
weak (owing to the low physiologic levels of blood glucose, in the range of 3–30 mM, or ∼0.5–
5 gm/L of blood, yielding optical rotations in the milli-degree range), and other chiral molecules
present in tissue mask the already-weak glucose signal. Nevertheless, we and others have per-
formed careful fundamental feasibility studies towards polarimetric tissue glucometry, as briefly
summarized below.

Figure 13.7 shows milli-degree-level optical rotations ψ induced by physiological (millimolar)
glucose concentrations in a 1-cm-thick polystyrene microsphere scattering phantom (µs ∼ 30 cm−1)
[71]. This study was performed with a sensitive polarimetric system that utilized polarization mod-
ulation and synchronous detection with a dual balanced photodetector approach, optimized to mea-
sure weak polarization signals in largely depolarized background. The results shown are for the
forward-direction transmission geometry, with the rotations calculated from the determined Stokes
vectors via ψ = 0.5tan−1(u/q). The forward transmission direction was selected to enable direct
results interpretation (pathlength ≥ cuvette thickness, rotation directly proportional to glucose con-
centration) and to minimize rotation artefacts unrelated to chirality. The drawback of transmission
geometry is severe depolarization, limiting polarimetric measurements to 2–3 mm thicknesses of
tissue [18, 21, 66]; this is why the scattering coefficient for this study in 1-cm-thick cuvette was
lowered to ∼ 30% of typical tissue levels. Nevertheless, this preliminary study shows the polari-
metric potential for measuring physiological glucose levels in tissue-like scattering media.

Backwards detection geometry in reflection mode is more convenient for practical tissue applica-
tions, yet the chirality-unrelated optical rotation artefacts can be severe [55]. A method to suppress
these artefacts is thus essential, and the Mueller matrix polar decomposition methodology can be
used to advantage here. Figure 13.8 shows the variations in the scattering induced apparent rota-
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Figure 13.8: Optical rotation (ψ), derived from the decomposition of Monte Carlo generated
Mueller matrices (open triangles), of backscattered light as a function of distance from the centre
of the incident beam of a chiral (χ = 0.082 degree cm−1, corresponding to 100 mM concentration
of glucose) isotropic turbid medium (µs = 30 cm−1, g = 0.95, thickness t = 1 cm). The solid
triangles represent the corresponding scattering induced rotation of the polarization vector, derived
from the Stokes parameters of the scattered light (for incident polarization state S = [1,0,1,0]T ).
The inset shows the backwards detection geometry. Decomposition analysis revealed that the large
scattering-induced (chirality-unrelated) apparent rotation is due to linear diattenuation (shown by
open asterisk), and can be decoupled from the chirality-induced rotation. The chirality-induced
rotation approaches zero as the detection angle approaches the exact backscattering detection (χ =
0 degree cm−1, data not shown). The symbols represent PSMC-generated points and the lines serve
to guide the eye. (Adopted from [30, 75].)

tion and in the chirality-induced true optical rotation as a function of offset distance from the point
of illumination, in the backscattering direction [12, 30]. As seen, the scattering rotation artefact
can be nearly an order of magnitude larger than the small chirality effect, completely dominating
and masking the presence of glucose. Yet polar decomposition can effectively separate out these
two differently sized contributions, revealing the glucose signal in this important yet artefact-prone
detection geometry. Despite the highly preliminary nature of this study – the complicating effects
of other chiral confounders, experimental validation of these Monte Carlo simulations results, sig-
nal changes due to varying optical absorption, and other complexities yet to be evaluated – this
does suggest a method to tease out small glucose specific signals in highly scattering tissues. In
combination with Monte Carlo-determined pathlength distributions, we are currently investigating
spectroscopic polarimetry coupled with chemometric regression analysis to isolate glucose rotations
from contributions of other chiral confounders [72]. Further, given the extremely challenging na-
ture of the noninvasive glucometry problem, it is worthwhile to consider hybrid approaches; that
is, combining spectral turbid polarimetry with another diagnostic modality (e.g., photoacoustics)
by carefully drawing on each technique’s complimentary strengths in isolating small tissue glucose
levels.
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13.6.2 Mueller matrix quantification of structural anisotropy in tissue

Tissue structural asymmetries can stem from aligned orientations of tissue fibrilar components,
such as connective tissues composed of collagen, elastin or cartilage, and from elongated asym-
metric cells such as smooth muscle or neurons. These structural alignments often result in tissue
birefringence, which can be probed with polarized light. Since the structural and functional prop-
erties of these tissues change with disease initiation and progression or in response to therapies,
birefringence measurements may represent a sensitive metric for assessing tissue status. The polar
decomposition platform is the preferred methodology in this context for two reasons: (1) it is essen-
tial to separate out the birefringence signature from other complex and simultaneously-occurring
compounding effects, and (2) other tissue metrics that are derived ‘for free’ using this methodology
(e.g., diattenuation, depolarization, and potentially other metrics not discussed above, such as retar-
dance ellipticity [10, 73]) may offer additional complimentary biophysical information that can help
generate a more complete picture of the complex nature of the interrogated biological tissue. Below
we present a cardiologic and a urological study to demonstrate the utility of polarimetric monitoring
of tissue anisotropy.

13.6.2.1 Cardiologic studies in the heart

Myocardial muscle is highly structured and anisotropic, due in part to the aligned arrangement of
cardiomyocytes and collagen fibers. It thus exhibits high levels of linear birefringence in its natural
healthy state. Following a heart attack, there is significant structural remodelling, with cardiomy-
ocyte atrophy and an increase in fibrotic collagen content (scar tissue), often arranged in chaotic
and random fashion. One thus expects a lowering of structural anisotropy, manifest as a decrease
in polarimetrically-derived linear birefringence levels. Further, various post-infarct therapies (e.g.,
stem cell tissue regeneration) aim to restore heart muscle towards its normal structure, and more
importantly restore some of its functional status [74]. It is thus interesting to apply the polarimet-
ric polar-decomposition methodology to quantify cardiac linear birefringence, and test its utility to
monitor the severity of heart infarct and to gauge the success of subsequent regenerative treatments.

Figure 13.9 summarizes the pertinent results from such a study, performed in transmission through
1-mm thick ex-vivo slabs of Lewis rat hearts after myocardial infarction, both with and without stem
cell treatments [30]. Point polarimetry measurements (obtained with PEM-based polarization mod-
ulation and synchronous detection system) and imaging results (with static polarization components
and a camera system) are shown, with both sets analyzed via the Mueller matrix polar decompo-
sition approach. The reader is referred to the original literature for the many details of biological
model and measurement specifics [30, 75]. Several interesting trends are evident from Fig. 13.9.
These include the high levels of native linear birefringence, a dramatic decrease in the affected
areas following the infarct, and partial recovery of these up towards pre-infarct birefringence lev-
els following stem cell regenerative treatments. This birefringence increase suggests myocardial
microstructural remodelling caused by therapeutic stem cell injection, and was subsequently con-
firmed by histology [75, 76]. Monitoring the micro-organizational state of cardiac tissue via tissue
polarimetry thus appears possible, with the important added advantage (not feasible with many other
techniques) of being able to assess and quantify regenerative treatments of infarcted myocardium.

Additional metrics that emerge from the polar decomposition analysis essentially for ‘free’, for
example diattenuation and depolarization (and circular birefringence/optical rotation, if any), con-
tain useful biological microstructural and compositional information that can supplement the linear
birefringence results [66]. We are currently examining optimal means of combining these vari-
ous polarimetric tissue characterization metrics; suffice it to say for now that the measurement and
quantification of tissue linear birefringence offers a promising means of assessing the health, and
pathology, of aligned biological tissues such as found in the heart. Similar trends are emerging
in oncology, with several recent reports detailing polarimetric contrast between normal and can-
cerous tissues in the oral and cervical cavities [77, 78], with potential application for early diag-
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Figure 13.9: Linear retardance δ extracted from experimentally determined Mueller matrices
corresponding to 1 mm-thick tissue sections from Lewis rat hearts following myocardial infarc-
tion. (a) White-light photographs of untreated (left panel) and stem cell treated (right panel) tis-
sue. (b) Mueller matrix-derived linear retardance (δ ) values at different angular positions from the
untreated (solid triangles) and treated (open triangles) samples. (c) The corresponding linear retar-
dance (δ ) images for the same tissue, derived from imaging polarimetry measurements. (Adopted
from [30, 72].)

nosis/detection and for intraoperative surgical margins assessment [79]. However, many technical
and conceptual challenges in quantifying biological anisotropy via the linear birefringence approach
remain; for example, additional studies dealing with nonlinear microscopy validation, unique deter-
mination of true birefringence magnitude and orientation, comparisons with diffusion-tensor MR,
and effects of spatially heterogeneous birefringence, have recently been undertaken [80, 81, 82].

13.6.2.2 Urologic studies in the bladder

Bladder is another internal organ whose structure and function engenders anisotropic tissue struc-
ture. Its purpose is to store and then expel urine, and its wall layers extend and then contract to



Quantitative Polarimetry for Tissue Characterization and Diagnosis 487

allow this to happen. Microstructural remodelling in its epithelial layers is known to occur un-
der mechanical distension and during various disease processes (e.g., bladder outlet obstruction)
[83, 84, 85, 86, 87]. As a step towards developing a turbid polarimetry platform for human bladder
pathology studies, we have recently obtained birefringence maps in normal ex-vivo distended rat
bladders that demonstrate the differential response of different bladder regions (dome, ventral and
dorsal locations) to changes in filling pressure [88]. The results of Fig. 13.10 were obtained under
pressures that represent typical physiological ranges in normal rodent (and human) bladders; as we
progress to examine pathological cases, the upper end of the pressure range will likely have to in-
crease. As seen, the dome region of the bladder shows maximum birefringence when the bladder
is distended to high pressures, whereas the ventral tissues remains roughly isotropic during disten-
sion. In addition, the average anisotropy direction is longitudinal, along the urethra to dome. Using
the analysis in Section 13.2.3.3, we converted the retardance values (derived from polar decompo-
sition) to birefringence by measuring the bladder wall thickness with OCT, and by estimating the
average photon pathlength in this reflection geometry via our polarization-sensitive Monte Carlo
model (Section 13.4). The derived wall anisotropy trends thus represent an intrinsic tissue property
of its anisotropy/organization independent of thickness, to better aid in understanding the structure-
functions relation in healthy bladders. These new insights into the wall microstructure anisotropy
of ex vivo distending bladders may also help improve the functionality of the artificially engineered
bladder tissues [89, 90].

Figure 13.10: Regional anisotropy (birefreingence) images of healthy ex-vivo intact rat bladders
distended to 1.0, 2.2, and 3.3 kPa. The polarization measurements were performed in reflection
geometry (25◦ off the exact backscattering direction). Retardance maps were derived by polar
decomposition analysis, and converted to birefringence using OCT-measured bladder wall thickness
and Monte Carlo-derived average pathlength. The rows show the birefreingence images from the
anatomical region indicated by the dotted contour on the ex-vivo bladder cartoon in the left column.
The color represents the value of ∆n (color bar on right), and the arrows indicate the anisotropy
direction. The field of view is 2 mm in diameter. Note the maximum birefringence in the dome
region upon maximum distension, and the overall longitudinal anisotropy orientation (along urethra-
dome axis). (Adopted from [88].)
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13.7 Conclusion
Biological tissues are not easily amenable to polarimetric investigation, owing to extensive polar-

ization loss caused by multiple scattering and by spatially-varying birefringence. Nevertheless, it is
possible in many circumstances to reliably detect some surviving polarization states after fully po-
larized (linear, circular, elliptical) light is shone on tissue. Several issues then emerge, including (1)
how to reliably measure and characterize this surviving fraction, (2) how to interpret these measured
polarization signals and relate them to tissue properties of interest, and (3) how to apply this emerg-
ing methodology to biomedical problems of interest. We have addressed various aspects of (1)–(3)
in this chapter, concentrating on applications pertaining to polarimetric detection of optical activity
(for glucose sensing) and birefringence imaging (for tissue anisotropy assessment). The general
trend towards polarization quantification, exemplified by Mueller matrix decomposition, has been
noted, as is essential for further advances in this challenging field. Coupled with improvements in
experimental methods and theoretical models, recent resurgence of interest and research activity,
and expanding range of exciting biomedical applications, the near- and long-term future of tissue
polarimetry appears promising.
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calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7,
341–348 (2002).

[36] A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “General methods for op-
timized design and calibration of Mueller polarimeters,” Thin Solid Films 455 , 112–119
(2004).



Quantitative Polarimetry for Tissue Characterization and Diagnosis 491

[37] B. Laude-Boulesteix, A. de Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric
imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004).

[38] M. Mujat and A. Dogariu, “Real-time measurement of the polarization transfer function,”
Appl. Opt. 40, 34–44 (2001).

[39] E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the cal-
ibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl.
Opt. 38, 3490–3502 (1999).

[40] C.-Y. Han and Y.-F. Chao, “Photoelastic modulated imaging ellipsometry by stroboscopic
illumination technique,” Rev. Sci. Instrum. 77, 023107 (2006).

[41] R.M. Azzam and N.M. Bashara, Ellipsometry and Polarized Light, North Holland, Amster-
dam (1979).

[42] V.V. Tuchin, L. Wang, and D.A. Zimnyakov, Optical Polarization in Biomedical Applica-
tions, Springer-Verlag, New York (2006).

[43] A.J. Welch, M.J.C Van Germert, W.M. Star and B.C. Wilson, “Overview of tissue optical
properties,” in Optical thermal response of laser irradiated tissue, A.J. Welch and M.J.C.
Van Germert, Eds., Plenum, New York (1995).

[44] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New
York (1978).

[45] D. Bicout, C. Brosseau , A.S. Martinez, and J.M. Schmitt , “Depolarization of multiply
scattered waves by spherical diffusers: Influence of size parameter,” Phys. Rev. E 49, 1767–
1770 (1994).

[46] E.E. Gorodnichev, A.I. Kuzolov, and D.B. Rozozkin, “Diffusion of circularly polarized light
in a disordered medium with large scale inhomogeneities,” JETP Letters 68, 22–28 (1998).

[47] A.D. Kim and M. Moscoso, “Influence of the refractive index on the depolarization of mul-
tiply scattered wave,” Phys. Rev. E 64, 026612 (2001).

[48] M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett.
95, 213901 (2005).

[49] N. Ghosh and I.A. Vitkin, “Tissue polarimetry: concepts, challenges, applications and out-
look,” J. Biomed. Opt. 16, 110801, (2011).

[50] L. Wang, S.L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in
multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[51] M. Moscoso, J.B. Keller, and G. Papanicolaou, “Depolarization and blurring of optical im-
ages by biological tissue,” J. Opt. Soc. Am. A 18, 948–960 (2001).

[52] M.F.G. Wood, X. Guo, and I.A. Vitkin, “Polarized light propagation in multiply scattering
media exhibiting both linear birefringence and optical activity: Monte Carlo model and ex-
perimental methodology,” J. Biomed. Opt. 12, 014029 (2007).

[53] M. Xu.,“Electric field Monte Carlo for polarized light propagation in turbid media,” Opt.
Exp. 12, 6530–6539 (2004).

[54] J.C. Ramella-Roman, S.A. Prahl, and S.L. Jacques, ‘’Three Monte Carlo programs of polar-
ized light transport into scattering media: part I,” Opt. Exp. 13, 4420–4438 (2005).
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